organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shao-Fa Sun,^a Rong-Ming Ma^a and Seik Weng Ng^b*

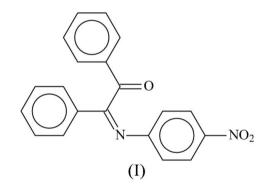
^aDepartment of Chemistry and Life Science, Xianning College, Xianning, Hubei 437005, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 292 KMean σ (C–C) = 0.003 Å R factor = 0.059 wR factor = 0.160 Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


2-(4-Nitrophenylimino)-1,2-diphenylethanone

The O=C-C=N sequence of atoms in the title molecule [alternative name: 2,3-diphenyl-4-(4-nitrophenyl)-1-oxa-4-azabutadiene], $C_{20}H_{14}N_2O_3$, adopts a *gauche* conformation, with an O=C-C=N torsion angle of 88.9 (1)°.

Received 13 July 2006 Accepted 14 July 2006

Comment

Dibenzoyl condenses with a primary amine to form a monoimino Schiff base such as, for example, 2-(phenylimino)-1,2diphenylethanone, $(C_6H_5)C(=O)C(C_6H_5)(=NC_6H_5)$; this compound has a molecular structure which contributes to the understanding of *peri*-selectivity in cycloadditions. In this compound, the ==C==O and ==C==N – functional groups are almost perpendicular to each other [O==C-C==N torsion angle = 84.5 (2)°; Guner *et al.*, 2000].

In the title molecular structure, (I) (Fig. 1), the addition of an electron-withdrawing nitro substituent to the phenylimino unit does not lead to a change either in the C—N distance [1.277 (2) Å, compared with 1.278 (2) Å found in the parent molecule] or in the bond lengths and angles in other parts of the molecule, although the O—C–C—N torsion angle is slightly different [O1–C7–C8–N1 torsion angle = 88.9 (1)°].

Experimental

4-Nitroaniline (2.00 g, 14.5 mmol) and dibenzoyl (2.99 g, 14.2 mmol) were dissolved in ethanol (35 ml) along with formic acid (1 ml). The solution was refluxed for 6 h. The solvent was then removed and the pure product obtained upon recrystallization from a 1:1 ethanol-chloroform mixture (35 ml) in 80% yield. Crystals of (I) were grown from ethanol as solvent. CHN elemental analysis: calculated for C₂₀H₁₄O₃N₂: C 72.72, H 4.27, N 8.48%; found: C 72.68, H 4.19, N 8.60%.

© 2006 International Union of Crystallography All rights reserved

Crystal data

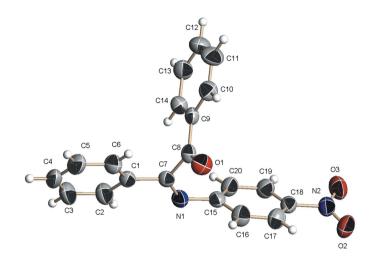
 $C_{20}H_{14}N_2O_3$ $M_r = 330.33$ Monoclinic, $P2_1/c$ a = 8.8265 (7) Å b = 11.5590(9) Å c = 16.365 (1) Å $\beta = 101.323 (1)^{\circ}$ V = 1637.1 (2) Å³

Data collection

Bruker APEX CCD area-detector diffractometer φ and ω scans Absorption correction: none 8569 measured reflections

Refinement

II store consectors con
H-atom parameters con
$w = 1/[\sigma^2(F_o^2) + (0.086H)]$
where $P = (F_0^2 + 2F_c^2)$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$


H atoms were placed in calculated positions, with C-H 0.93 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$, and were included in the refinement in the riding-model approximation.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Z = 4 $D_x = 1.340 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 292 (2) K Block, yellow $0.36 \times 0.23 \times 0.19 \text{ mm}$

3684 independent reflections 2574 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.059$ $\theta_{\rm max} = 27.5^{\circ}$

nstrained $(P)^{2}]_{c}^{2}/3$

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

The authors thank Xianning College and the University of Malaya for supporting this study.

References

Bruker (2003). SAINT (Version 6.54a) and SMART (Version 6.54a). Bruker AXS Inc., Madison, Wisconsin, USA.

Guner, V., Kabak, M. & Elerman, Y. (2000). J. Mol. Struct. 526, 151-157.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.